TSTP Solution File: PUZ086^1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : PUZ086^1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:13:19 EDT 2023

% Result   : Theorem 0.20s 0.59s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem    : PUZ086^1 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.14  % Command    : do_cvc5 %s %d
% 0.17/0.35  % Computer : n008.cluster.edu
% 0.17/0.35  % Model    : x86_64 x86_64
% 0.17/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.17/0.35  % Memory   : 8042.1875MB
% 0.17/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.17/0.35  % CPULimit   : 300
% 0.17/0.35  % WCLimit    : 300
% 0.17/0.35  % DateTime   : Sat Aug 26 22:14:47 EDT 2023
% 0.17/0.35  % CPUTime    : 
% 0.20/0.48  %----Proving TH0
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  % File     : PUZ086^1 : TPTP v8.1.2. Released v4.0.0.
% 0.20/0.49  % Domain   : Logic Calculi (Espistemic logic)
% 0.20/0.49  % Problem  : The friends puzzle - they both know
% 0.20/0.49  % Version  : [Ben09] axioms.
% 0.20/0.49  % English  : (i) Peter is a friend of John, so if Peter knows that John knows
% 0.20/0.49  %            something then John knows that Peter knows the same thing. 
% 0.20/0.49  %            (ii) Peter is married, so if Peter's wife knows something, then
% 0.20/0.49  %            Peter knows the same thing. John and Peter have an appointment,
% 0.20/0.49  %            let us consider the following situation: (a) Peter knows the time
% 0.20/0.49  %            of their appointment. (b) Peter also knows that John knows the
% 0.20/0.49  %            place of their appointment. Moreover, (c) Peter's wife knows that
% 0.20/0.49  %            if Peter knows the time of their appointment, then John knows
% 0.20/0.49  %            that too (since John and Peter are friends). Finally, (d) Peter
% 0.20/0.49  %            knows that if John knows the place and the time of their
% 0.20/0.49  %            appointment, then John knows that he has an appointment. From
% 0.20/0.49  %            this situation we want to prove (e) that each of the two friends
% 0.20/0.49  %            knows that the other one knows that he has an appointment.
% 0.20/0.49  
% 0.20/0.49  % Refs     : [Gol92] Goldblatt (1992), Logics of Time and Computation
% 0.20/0.49  %          : [Bal98] Baldoni (1998), Normal Multimodal Logics: Automatic De
% 0.20/0.49  %          : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% 0.20/0.49  % Source   : [Ben09]
% 0.20/0.49  % Names    : mmex3.p [Ben09]
% 0.20/0.49  
% 0.20/0.49  % Status   : Theorem
% 0.20/0.49  % Rating   : 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% 0.20/0.49  % Syntax   : Number of formulae    :   82 (  31 unt;  38 typ;  31 def)
% 0.20/0.49  %            Number of atoms       :  168 (  36 equ;   0 cnn)
% 0.20/0.49  %            Maximal formula atoms :   12 (   3 avg)
% 0.20/0.49  %            Number of connectives :  190 (   4   ~;   4   |;   8   &; 166   @)
% 0.20/0.49  %                                         (   0 <=>;   8  =>;   0  <=;   0 <~>)
% 0.20/0.49  %            Maximal formula depth :    9 (   2 avg)
% 0.20/0.49  %            Number of types       :    3 (   1 usr)
% 0.20/0.49  %            Number of type conns  :  182 ( 182   >;   0   *;   0   +;   0  <<)
% 0.20/0.49  %            Number of symbols     :   46 (  44 usr;   8 con; 0-3 aty)
% 0.20/0.49  %            Number of variables   :   86 (  51   ^;  29   !;   6   ?;  86   :)
% 0.20/0.49  % SPC      : TH0_THM_EQU_NAR
% 0.20/0.49  
% 0.20/0.49  % Comments : 
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Include embedding of quantified multimodal logic in simple type theory
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Declaration of additional base type mu
% 0.20/0.49  thf(mu_type,type,
% 0.20/0.49      mu: $tType ).
% 0.20/0.49  
% 0.20/0.49  %----Equality
% 0.20/0.49  thf(meq_ind_type,type,
% 0.20/0.49      meq_ind: mu > mu > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(meq_ind,definition,
% 0.20/0.49      ( meq_ind
% 0.20/0.49      = ( ^ [X: mu,Y: mu,W: $i] : ( X = Y ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(meq_prop_type,type,
% 0.20/0.49      meq_prop: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(meq_prop,definition,
% 0.20/0.49      ( meq_prop
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,W: $i] :
% 0.20/0.49            ( ( X @ W )
% 0.20/0.49            = ( Y @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Modal operators not, or, box, Pi 
% 0.20/0.49  thf(mnot_type,type,
% 0.20/0.49      mnot: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mnot,definition,
% 0.20/0.49      ( mnot
% 0.20/0.49      = ( ^ [Phi: $i > $o,W: $i] :
% 0.20/0.49            ~ ( Phi @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mor_type,type,
% 0.20/0.49      mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mor,definition,
% 0.20/0.49      ( mor
% 0.20/0.49      = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
% 0.20/0.49            ( ( Phi @ W )
% 0.20/0.49            | ( Psi @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mand_type,type,
% 0.20/0.49      mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mand,definition,
% 0.20/0.49      ( mand
% 0.20/0.49      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mnot @ ( mor @ ( mnot @ Phi ) @ ( mnot @ Psi ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mimplies_type,type,
% 0.20/0.49      mimplies: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mimplies,definition,
% 0.20/0.49      ( mimplies
% 0.20/0.49      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mor @ ( mnot @ Phi ) @ Psi ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mimplied_type,type,
% 0.20/0.49      mimplied: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mimplied,definition,
% 0.20/0.49      ( mimplied
% 0.20/0.49      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mor @ ( mnot @ Psi ) @ Phi ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mequiv_type,type,
% 0.20/0.49      mequiv: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mequiv,definition,
% 0.20/0.49      ( mequiv
% 0.20/0.49      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mand @ ( mimplies @ Phi @ Psi ) @ ( mimplies @ Psi @ Phi ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mxor_type,type,
% 0.20/0.49      mxor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mxor,definition,
% 0.20/0.49      ( mxor
% 0.20/0.49      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mnot @ ( mequiv @ Phi @ Psi ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Universal quantification: individuals
% 0.20/0.49  thf(mforall_ind_type,type,
% 0.20/0.49      mforall_ind: ( mu > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mforall_ind,definition,
% 0.20/0.49      ( mforall_ind
% 0.20/0.49      = ( ^ [Phi: mu > $i > $o,W: $i] :
% 0.20/0.49          ! [X: mu] : ( Phi @ X @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mforall_prop_type,type,
% 0.20/0.49      mforall_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mforall_prop,definition,
% 0.20/0.49      ( mforall_prop
% 0.20/0.49      = ( ^ [Phi: ( $i > $o ) > $i > $o,W: $i] :
% 0.20/0.49          ! [P: $i > $o] : ( Phi @ P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists_ind_type,type,
% 0.20/0.49      mexists_ind: ( mu > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists_ind,definition,
% 0.20/0.49      ( mexists_ind
% 0.20/0.49      = ( ^ [Phi: mu > $i > $o] :
% 0.20/0.49            ( mnot
% 0.20/0.49            @ ( mforall_ind
% 0.20/0.49              @ ^ [X: mu] : ( mnot @ ( Phi @ X ) ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists_prop_type,type,
% 0.20/0.49      mexists_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists_prop,definition,
% 0.20/0.49      ( mexists_prop
% 0.20/0.49      = ( ^ [Phi: ( $i > $o ) > $i > $o] :
% 0.20/0.49            ( mnot
% 0.20/0.49            @ ( mforall_prop
% 0.20/0.49              @ ^ [P: $i > $o] : ( mnot @ ( Phi @ P ) ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mtrue_type,type,
% 0.20/0.49      mtrue: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mtrue,definition,
% 0.20/0.49      ( mtrue
% 0.20/0.49      = ( ^ [W: $i] : $true ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mfalse_type,type,
% 0.20/0.49      mfalse: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mfalse,definition,
% 0.20/0.49      ( mfalse
% 0.20/0.49      = ( mnot @ mtrue ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mbox_type,type,
% 0.20/0.49      mbox: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mbox,definition,
% 0.20/0.49      ( mbox
% 0.20/0.49      = ( ^ [R: $i > $i > $o,Phi: $i > $o,W: $i] :
% 0.20/0.49          ! [V: $i] :
% 0.20/0.49            ( ~ ( R @ W @ V )
% 0.20/0.49            | ( Phi @ V ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mdia_type,type,
% 0.20/0.49      mdia: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mdia,definition,
% 0.20/0.49      ( mdia
% 0.20/0.49      = ( ^ [R: $i > $i > $o,Phi: $i > $o] : ( mnot @ ( mbox @ R @ ( mnot @ Phi ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Definition of properties of accessibility relations
% 0.20/0.49  thf(mreflexive_type,type,
% 0.20/0.49      mreflexive: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mreflexive,definition,
% 0.20/0.49      ( mreflexive
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [S: $i] : ( R @ S @ S ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(msymmetric_type,type,
% 0.20/0.49      msymmetric: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(msymmetric,definition,
% 0.20/0.49      ( msymmetric
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [S: $i,T: $i] :
% 0.20/0.49            ( ( R @ S @ T )
% 0.20/0.49           => ( R @ T @ S ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mserial_type,type,
% 0.20/0.49      mserial: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mserial,definition,
% 0.20/0.49      ( mserial
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [S: $i] :
% 0.20/0.49          ? [T: $i] : ( R @ S @ T ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mtransitive_type,type,
% 0.20/0.49      mtransitive: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mtransitive,definition,
% 0.20/0.49      ( mtransitive
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [S: $i,T: $i,U: $i] :
% 0.20/0.49            ( ( ( R @ S @ T )
% 0.20/0.49              & ( R @ T @ U ) )
% 0.20/0.49           => ( R @ S @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(meuclidean_type,type,
% 0.20/0.49      meuclidean: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(meuclidean,definition,
% 0.20/0.49      ( meuclidean
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [S: $i,T: $i,U: $i] :
% 0.20/0.49            ( ( ( R @ S @ T )
% 0.20/0.49              & ( R @ S @ U ) )
% 0.20/0.49           => ( R @ T @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mpartially_functional_type,type,
% 0.20/0.49      mpartially_functional: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mpartially_functional,definition,
% 0.20/0.49      ( mpartially_functional
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [S: $i,T: $i,U: $i] :
% 0.20/0.49            ( ( ( R @ S @ T )
% 0.20/0.49              & ( R @ S @ U ) )
% 0.20/0.49           => ( T = U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mfunctional_type,type,
% 0.20/0.49      mfunctional: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mfunctional,definition,
% 0.20/0.49      ( mfunctional
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [S: $i] :
% 0.20/0.49          ? [T: $i] :
% 0.20/0.49            ( ( R @ S @ T )
% 0.20/0.49            & ! [U: $i] :
% 0.20/0.49                ( ( R @ S @ U )
% 0.20/0.49               => ( T = U ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mweakly_dense_type,type,
% 0.20/0.49      mweakly_dense: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mweakly_dense,definition,
% 0.20/0.49      ( mweakly_dense
% 0.20/0.50      = ( ^ [R: $i > $i > $o] :
% 0.20/0.50          ! [S: $i,T: $i,U: $i] :
% 0.20/0.50            ( ( R @ S @ T )
% 0.20/0.50           => ? [U: $i] :
% 0.20/0.50                ( ( R @ S @ U )
% 0.20/0.50                & ( R @ U @ T ) ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(mweakly_connected_type,type,
% 0.20/0.50      mweakly_connected: ( $i > $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(mweakly_connected,definition,
% 0.20/0.50      ( mweakly_connected
% 0.20/0.50      = ( ^ [R: $i > $i > $o] :
% 0.20/0.50          ! [S: $i,T: $i,U: $i] :
% 0.20/0.50            ( ( ( R @ S @ T )
% 0.20/0.50              & ( R @ S @ U ) )
% 0.20/0.50           => ( ( R @ T @ U )
% 0.20/0.50              | ( T = U )
% 0.20/0.50              | ( R @ U @ T ) ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(mweakly_directed_type,type,
% 0.20/0.50      mweakly_directed: ( $i > $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(mweakly_directed,definition,
% 0.20/0.50      ( mweakly_directed
% 0.20/0.50      = ( ^ [R: $i > $i > $o] :
% 0.20/0.50          ! [S: $i,T: $i,U: $i] :
% 0.20/0.50            ( ( ( R @ S @ T )
% 0.20/0.50              & ( R @ S @ U ) )
% 0.20/0.50           => ? [V: $i] :
% 0.20/0.50                ( ( R @ T @ V )
% 0.20/0.50                & ( R @ U @ V ) ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of validity
% 0.20/0.50  thf(mvalid_type,type,
% 0.20/0.50      mvalid: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(mvalid,definition,
% 0.20/0.50      ( mvalid
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ! [W: $i] : ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of invalidity
% 0.20/0.50  thf(minvalid_type,type,
% 0.20/0.50      minvalid: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(minvalid,definition,
% 0.20/0.50      ( minvalid
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ! [W: $i] :
% 0.20/0.50            ~ ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of satisfiability
% 0.20/0.50  thf(msatisfiable_type,type,
% 0.20/0.50      msatisfiable: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(msatisfiable,definition,
% 0.20/0.50      ( msatisfiable
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ? [W: $i] : ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of countersatisfiability
% 0.20/0.50  thf(mcountersatisfiable_type,type,
% 0.20/0.50      mcountersatisfiable: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(mcountersatisfiable,definition,
% 0.20/0.50      ( mcountersatisfiable
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ? [W: $i] :
% 0.20/0.50            ~ ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  thf(peter,type,
% 0.20/0.50      peter: $i > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(john,type,
% 0.20/0.50      john: $i > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(wife,type,
% 0.20/0.50      wife: ( $i > $i > $o ) > $i > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(refl_peter,axiom,
% 0.20/0.50      mreflexive @ peter ).
% 0.20/0.50  
% 0.20/0.50  thf(refl_john,axiom,
% 0.20/0.50      mreflexive @ john ).
% 0.20/0.50  
% 0.20/0.50  thf(refl_wife_peter,axiom,
% 0.20/0.50      mreflexive @ ( wife @ peter ) ).
% 0.20/0.50  
% 0.20/0.50  thf(trans_peter,axiom,
% 0.20/0.50      mtransitive @ peter ).
% 0.20/0.50  
% 0.20/0.50  thf(trans_john,axiom,
% 0.20/0.50      mtransitive @ john ).
% 0.20/0.50  
% 0.20/0.50  thf(trans_wife_peter,axiom,
% 0.20/0.50      mtransitive @ ( wife @ peter ) ).
% 0.20/0.50  
% 0.20/0.50  thf(ax_i,axiom,
% 0.20/0.50      ( mvalid
% 0.20/0.50      @ ( mforall_prop
% 0.20/0.50        @ ^ [A: $i > $o] : ( mimplies @ ( mbox @ peter @ ( mbox @ john @ A ) ) @ ( mbox @ john @ ( mbox @ peter @ A ) ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(ax_ii,axiom,
% 0.20/0.50      ( mvalid
% 0.20/0.50      @ ( mforall_prop
% 0.20/0.50        @ ^ [A: $i > $o] : ( mimplies @ ( mbox @ ( wife @ peter ) @ A ) @ ( mbox @ peter @ A ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(time,type,
% 0.20/0.50      time: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(place,type,
% 0.20/0.50      place: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(appointment,type,
% 0.20/0.50      appointment: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(ax_a,axiom,
% 0.20/0.50      mvalid @ ( mbox @ peter @ time ) ).
% 0.20/0.50  
% 0.20/0.50  thf(ax_b,axiom,
% 0.20/0.50      mvalid @ ( mbox @ peter @ ( mbox @ john @ place ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(ax_c,axiom,
% 0.20/0.50      mvalid @ ( mbox @ ( wife @ peter ) @ ( mimplies @ ( mbox @ peter @ time ) @ ( mbox @ john @ time ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(ax_d,axiom,
% 0.20/0.50      mvalid @ ( mbox @ peter @ ( mbox @ john @ ( mimplies @ ( mand @ place @ time ) @ appointment ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(conj,conjecture,
% 0.20/0.50      mvalid @ ( mand @ ( mbox @ peter @ ( mbox @ john @ appointment ) ) @ ( mbox @ john @ ( mbox @ peter @ appointment ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.epmVCfu0Yg/cvc5---1.0.5_31969.p...
% 0.20/0.50  (declare-sort $$unsorted 0)
% 0.20/0.50  (declare-sort tptp.mu 0)
% 0.20/0.50  (declare-fun tptp.meq_ind (tptp.mu tptp.mu $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.meq_ind (lambda ((X tptp.mu) (Y tptp.mu) (W $$unsorted)) (= X Y))))
% 0.20/0.50  (declare-fun tptp.meq_prop ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.meq_prop (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (W $$unsorted)) (= (@ X W) (@ Y W)))))
% 0.20/0.50  (declare-fun tptp.mnot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mnot (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (not (@ Phi W)))))
% 0.20/0.50  (declare-fun tptp.mor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (W $$unsorted)) (or (@ Phi W) (@ Psi W)))))
% 0.20/0.50  (declare-fun tptp.mand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mand (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mor (@ tptp.mnot Phi)) (@ tptp.mnot Psi))) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mimplies ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mimplies (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Phi)) Psi) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mimplied ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mimplied (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Psi)) Phi) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mequiv ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mequiv (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimplies Phi) Psi)) (@ (@ tptp.mimplies Psi) Phi)) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mxor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mxor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mequiv Phi) Psi)) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mforall_ind ((-> tptp.mu $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mforall_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.mu)) (@ (@ Phi X) W)))))
% 0.20/0.50  (declare-fun tptp.mforall_prop ((-> (-> $$unsorted Bool) $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mforall_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (W $$unsorted)) (forall ((P (-> $$unsorted Bool))) (@ (@ Phi P) W)))))
% 0.20/0.50  (declare-fun tptp.mexists_ind ((-> tptp.mu $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mexists_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_ind (lambda ((X tptp.mu) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi X)) __flatten_var_0)))) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mexists_prop ((-> (-> $$unsorted Bool) $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mexists_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_prop (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi P)) __flatten_var_0)))) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mtrue ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mtrue (lambda ((W $$unsorted)) true)))
% 0.20/0.50  (declare-fun tptp.mfalse ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mfalse (@ tptp.mnot tptp.mtrue)))
% 0.20/0.50  (declare-fun tptp.mbox ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ R W) V)) (@ Phi V))))))
% 0.20/0.50  (declare-fun tptp.mdia ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mbox R) (@ tptp.mnot Phi))) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mreflexive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (@ (@ R S) S)))))
% 0.20/0.50  (declare-fun tptp.msymmetric ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.msymmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted)) (=> (@ (@ R S) T) (@ (@ R T) S))))))
% 0.20/0.50  (declare-fun tptp.mserial ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mserial (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (@ (@ R S) T))))))
% 0.20/0.50  (declare-fun tptp.mtransitive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mtransitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ (@ R T) U)) (@ _let_1 U)))))))
% 0.20/0.50  (declare-fun tptp.meuclidean ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.meuclidean (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (@ (@ R T) U)))))))
% 0.20/0.50  (declare-fun tptp.mpartially_functional ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mpartially_functional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (= T U)))))))
% 0.20/0.50  (declare-fun tptp.mfunctional ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mfunctional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (and (@ (@ R S) T) (forall ((U $$unsorted)) (=> (@ (@ R S) U) (= T U)))))))))
% 0.20/0.50  (declare-fun tptp.mweakly_dense ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mweakly_dense (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (=> (@ (@ R S) T) (exists ((U $$unsorted)) (and (@ (@ R S) U) (@ (@ R U) T))))))))
% 0.20/0.50  (declare-fun tptp.mweakly_connected ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mweakly_connected (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (or (@ (@ R T) U) (= T U) (@ (@ R U) T))))))))
% 0.20/0.50  (declare-fun tptp.mweakly_directed ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mweakly_directed (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (exists ((V $$unsorted)) (and (@ (@ R T) V) (@ (@ R U) V)))))))))
% 0.20/0.50  (declare-fun tptp.mvalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))
% 0.20/0.50  (declare-fun tptp.minvalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.minvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))
% 0.20/0.50  (declare-fun tptp.msatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.msatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))
% 0.20/0.50  (declare-fun tptp.mcountersatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mcountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))
% 0.20/0.50  (declare-fun tptp.peter ($$unsorted $$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.john ($$unsorted $$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.wife ((-> $$unsorted $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (@ tptp.mreflexive tptp.peter))
% 0.20/0.50  (assert (@ tptp.mreflexive tptp.john))
% 0.20/0.50  (assert (@ tptp.mreflexive (@ tptp.wife tptp.peter)))
% 0.20/0.50  (assert (@ tptp.mtransitive tptp.peter))
% 0.20/0.50  (assert (@ tptp.mtransitive tptp.john))
% 0.20/0.50  (assert (@ tptp.mtransitive (@ tptp.wife tptp.peter)))
% 0.20/0.50  (assert (@ tptp.mvalid (@ tptp.mforall_prop (lambda ((A (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (let ((_let_1 (@ tptp.mbox tptp.peter))) (let ((_let_2 (@ tptp.mbox tptp.john))) (@ (@ (@ tptp.mimplies (@ _let_1 (@ _let_2 A))) (@ _let_2 (@ _let_1 A))) __flatten_var_0)))))))
% 0.20/0.50  (assert (@ tptp.mvalid (@ tptp.mforall_prop (lambda ((A (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mimplies (@ (@ tptp.mbox (@ tptp.wife tptp.peter)) A)) (@ (@ tptp.mbox tptp.peter) A)) __flatten_var_0)))))
% 0.20/0.50  (declare-fun tptp.time ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.place ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.appointment ($$unsorted) Bool)
% 0.20/0.50  (assert (@ tptp.mvalid (@ (@ tptp.mbox tptp.peter) tptp.time)))
% 0.20/0.50  (assert (@ tptp.mvalid (@ (@ tptp.mbox tptp.peter) (@ (@ tptp.mbox tptp.john) tptp.place))))
% 0.20/0.50  (assert (@ tptp.mvalid (@ (@ tptp.mbox (@ tptp.wife tptp.peter)) (@ (@ tptp.mimplies (@ (@ tptp.mbox tptp.peter) tptp.time)) (@ (@ tptp.mbox tptp.john) tptp.time)))))
% 0.20/0.59  (assert (@ tptp.mvalid (@ (@ tptp.mbox tptp.peter) (@ (@ tptp.mbox tptp.john) (@ (@ tptp.mimplies (@ (@ tptp.mand tptp.place) tptp.time)) tptp.appointment)))))
% 0.20/0.59  (assert (let ((_let_1 (@ tptp.mbox tptp.peter))) (let ((_let_2 (@ tptp.mbox tptp.john))) (not (@ tptp.mvalid (@ (@ tptp.mand (@ _let_1 (@ _let_2 tptp.appointment))) (@ _let_2 (@ _let_1 tptp.appointment))))))))
% 0.20/0.59  (set-info :filename cvc5---1.0.5_31969)
% 0.20/0.59  (check-sat-assuming ( true ))
% 0.20/0.59  ------- get file name : TPTP file name is PUZ086^1
% 0.20/0.59  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_31969.smt2...
% 0.20/0.59  --- Run --ho-elim --full-saturate-quant at 10...
% 0.20/0.59  % SZS status Theorem for PUZ086^1
% 0.20/0.59  % SZS output start Proof for PUZ086^1
% 0.20/0.59  (
% 0.20/0.59  (let ((_let_1 (@ tptp.mbox tptp.peter))) (let ((_let_2 (@ tptp.mbox tptp.john))) (let ((_let_3 (not (@ tptp.mvalid (@ (@ tptp.mand (@ _let_1 (@ _let_2 tptp.appointment))) (@ _let_2 (@ _let_1 tptp.appointment))))))) (let ((_let_4 (@ tptp.mvalid (@ _let_1 (@ _let_2 (@ (@ tptp.mimplies (@ (@ tptp.mand tptp.place) tptp.time)) tptp.appointment)))))) (let ((_let_5 (@ _let_1 tptp.time))) (let ((_let_6 (@ tptp.wife tptp.peter))) (let ((_let_7 (@ tptp.mvalid (@ _let_1 (@ _let_2 tptp.place))))) (let ((_let_8 (@ tptp.mvalid _let_5))) (let ((_let_9 (@ tptp.mvalid (@ tptp.mforall_prop (lambda ((A (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (let ((_let_1 (@ tptp.mbox tptp.peter))) (let ((_let_2 (@ tptp.mbox tptp.john))) (@ (@ (@ tptp.mimplies (@ _let_1 (@ _let_2 A))) (@ _let_2 (@ _let_1 A))) __flatten_var_0)))))))) (let ((_let_10 (@ tptp.mreflexive tptp.john))) (let ((_let_11 (@ tptp.mreflexive tptp.peter))) (let ((_let_12 (= tptp.mcountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_13 (= tptp.msatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))) (let ((_let_14 (= tptp.minvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_15 (= tptp.mvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))) (let ((_let_16 (= tptp.mweakly_directed (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (exists ((V $$unsorted)) (and (@ (@ R T) V) (@ (@ R U) V)))))))))) (let ((_let_17 (= tptp.mweakly_connected (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (or (@ (@ R T) U) (= T U) (@ (@ R U) T))))))))) (let ((_let_18 (= tptp.mweakly_dense (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (=> (@ (@ R S) T) (exists ((U $$unsorted)) (and (@ (@ R S) U) (@ (@ R U) T))))))))) (let ((_let_19 (= tptp.mfunctional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (and (@ (@ R S) T) (forall ((U $$unsorted)) (=> (@ (@ R S) U) (= T U)))))))))) (let ((_let_20 (= tptp.mpartially_functional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (= T U)))))))) (let ((_let_21 (= tptp.meuclidean (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (@ (@ R T) U)))))))) (let ((_let_22 (= tptp.mtransitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ (@ R T) U)) (@ _let_1 U)))))))) (let ((_let_23 (= tptp.mserial (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (@ (@ R S) T))))))) (let ((_let_24 (= tptp.msymmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted)) (=> (@ (@ R S) T) (@ (@ R T) S))))))) (let ((_let_25 (= tptp.mreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (@ (@ R S) S)))))) (let ((_let_26 (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mbox R) (@ tptp.mnot Phi))) __flatten_var_0))))) (let ((_let_27 (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ R W) V)) (@ Phi V))))))) (let ((_let_28 (= tptp.mfalse (@ tptp.mnot tptp.mtrue)))) (let ((_let_29 (= tptp.mtrue (lambda ((W $$unsorted)) true)))) (let ((_let_30 (= tptp.mexists_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_prop (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi P)) __flatten_var_0)))) __flatten_var_0))))) (let ((_let_31 (= tptp.mexists_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_ind (lambda ((X tptp.mu) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi X)) __flatten_var_0)))) __flatten_var_0))))) (let ((_let_32 (= tptp.mforall_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (W $$unsorted)) (forall ((P (-> $$unsorted Bool))) (@ (@ Phi P) W)))))) (let ((_let_33 (= tptp.mforall_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.mu)) (@ (@ Phi X) W)))))) (let ((_let_34 (= tptp.mxor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mequiv Phi) Psi)) __flatten_var_0))))) (let ((_let_35 (= tptp.mequiv (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimplies Phi) Psi)) (@ (@ tptp.mimplies Psi) Phi)) __flatten_var_0))))) (let ((_let_36 (= tptp.mimplied (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Psi)) Phi) __flatten_var_0))))) (let ((_let_37 (= tptp.mimplies (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Phi)) Psi) __flatten_var_0))))) (let ((_let_38 (= tptp.mand (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mor (@ tptp.mnot Phi)) (@ tptp.mnot Psi))) __flatten_var_0))))) (let ((_let_39 (= tptp.mor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (W $$unsorted)) (or (@ Phi W) (@ Psi W)))))) (let ((_let_40 (= tptp.mnot (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (not (@ Phi W)))))) (let ((_let_41 (= tptp.meq_prop (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (W $$unsorted)) (= (@ X W) (@ Y W)))))) (let ((_let_42 (= tptp.meq_ind (lambda ((X tptp.mu) (Y tptp.mu) (W $$unsorted)) (= X Y))))) (let ((_let_43 (forall ((W $$unsorted) (V $$unsorted)) (or (not (ho_4 (ho_3 k_2 W) V)) (ho_4 k_8 V))))) (let ((_let_44 (ho_4 k_8 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12))) (let ((_let_45 (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12))) (let ((_let_46 (not _let_45))) (let ((_let_47 (or _let_46 _let_44))) (let ((_let_48 (ASSUME :args (_let_42)))) (let ((_let_49 (ASSUME :args (_let_41)))) (let ((_let_50 (ASSUME :args (_let_40)))) (let ((_let_51 (ASSUME :args (_let_39)))) (let ((_let_52 (EQ_RESOLVE (ASSUME :args (_let_38)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_51 _let_50 _let_49 _let_48) :args (_let_38 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_53 (EQ_RESOLVE (ASSUME :args (_let_37)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_37 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_54 (EQ_RESOLVE (ASSUME :args (_let_36)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_53 _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_36 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_55 (EQ_RESOLVE (ASSUME :args (_let_35)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_35 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_56 (EQ_RESOLVE (ASSUME :args (_let_34)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_34 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_57 (ASSUME :args (_let_33)))) (let ((_let_58 (ASSUME :args (_let_32)))) (let ((_let_59 (EQ_RESOLVE (ASSUME :args (_let_31)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_31 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_60 (EQ_RESOLVE (ASSUME :args (_let_30)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_30 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_61 (EQ_RESOLVE (ASSUME :args (_let_29)) (MACRO_SR_EQ_INTRO :args (_let_29 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_62 (EQ_RESOLVE (ASSUME :args (_let_28)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_28 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_63 (ASSUME :args (_let_27)))) (let ((_let_64 (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO :args (_let_12 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_13)) (MACRO_SR_EQ_INTRO :args (_let_13 SB_DEFAULT SBA_FIXPOINT))) (ASSUME :args (_let_14)) (ASSUME :args (_let_15)) (EQ_RESOLVE (ASSUME :args (_let_16)) (MACRO_SR_EQ_INTRO :args (_let_16 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_17)) (MACRO_SR_EQ_INTRO :args (_let_17 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_18)) (MACRO_SR_EQ_INTRO :args (_let_18 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_19)) (MACRO_SR_EQ_INTRO :args (_let_19 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_20)) (MACRO_SR_EQ_INTRO :args (_let_20 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_21)) (MACRO_SR_EQ_INTRO :args (_let_21 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_22)) (MACRO_SR_EQ_INTRO :args (_let_22 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_23)) (MACRO_SR_EQ_INTRO :args (_let_23 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_24)) (MACRO_SR_EQ_INTRO :args (_let_24 SB_DEFAULT SBA_FIXPOINT))) (ASSUME :args (_let_25)) (EQ_RESOLVE (ASSUME :args (_let_26)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48) :args (_let_26 SB_DEFAULT SBA_FIXPOINT))) _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48))) (let ((_let_65 (EQ_RESOLVE (ASSUME :args (_let_8)) (TRANS (MACRO_SR_EQ_INTRO _let_64 :args (_let_8 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((W $$unsorted) (V $$unsorted)) (or (not (@ (@ tptp.peter W) V)) (@ tptp.time V))) _let_43))))))) (let ((_let_66 (not _let_47))) (let ((_let_67 (not _let_44))) (let ((_let_68 (ho_4 k_9 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12))) (let ((_let_69 (not _let_68))) (let ((_let_70 (ho_4 k_10 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12))) (let ((_let_71 (ho_4 (ho_3 k_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12))) (let ((_let_72 (not _let_71))) (let ((_let_73 (or _let_72 _let_70 _let_69 _let_67))) (let ((_let_74 (forall ((BOUND_VARIABLE_2189 $$unsorted)) (or (not (ho_4 (ho_3 k_5 BOUND_VARIABLE_2189) BOUND_VARIABLE_2189)) (ho_4 k_10 BOUND_VARIABLE_2189) (not (ho_4 k_9 BOUND_VARIABLE_2189)) (not (ho_4 k_8 BOUND_VARIABLE_2189)))))) (let ((_let_75 (forall ((W $$unsorted) (V $$unsorted)) (not (ho_4 (ho_3 k_2 W) V))))) (let ((_let_76 (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11))) (let ((_let_77 (forall ((S $$unsorted)) (ho_4 (ho_3 k_2 S) S)))) (let ((_let_78 (EQ_RESOLVE (ASSUME :args (_let_11)) (TRANS (MACRO_SR_EQ_INTRO _let_64 :args (_let_11 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((S $$unsorted)) (@ (@ tptp.peter S) S)) _let_77))))))) (let ((_let_79 (_let_77))) (let ((_let_80 (_let_75))) (let ((_let_81 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_80) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_80)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_78 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_11 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_79)) _let_78 :args (_let_76 false _let_77)) :args ((not _let_75) false _let_76)))) (let ((_let_82 (forall ((W $$unsorted) (V $$unsorted)) (not (@ (@ tptp.peter W) V))))) (let ((_let_83 (_let_74))) (let ((_let_84 (or _let_72 _let_68))) (let ((_let_85 (forall ((BOUND_VARIABLE_2027 $$unsorted)) (or (not (ho_4 (ho_3 k_5 BOUND_VARIABLE_2027) BOUND_VARIABLE_2027)) (ho_4 k_9 BOUND_VARIABLE_2027))))) (let ((_let_86 (_let_85))) (let ((_let_87 (forall ((S $$unsorted)) (ho_4 (ho_3 k_5 S) S)))) (let ((_let_88 (EQ_RESOLVE (ASSUME :args (_let_10)) (TRANS (MACRO_SR_EQ_INTRO _let_64 :args (_let_10 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((S $$unsorted)) (@ (@ tptp.john S) S)) _let_87))))))) (let ((_let_89 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_88 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12 QUANTIFIERS_INST_CBQI_CONFLICT)) :args (_let_87))) _let_88 :args (_let_71 false _let_87)))) (let ((_let_90 (or _let_72 _let_70))) (let ((_let_91 (forall ((BOUND_VARIABLE_2235 $$unsorted)) (or (not (ho_4 (ho_3 k_5 BOUND_VARIABLE_2235) BOUND_VARIABLE_2235)) (ho_4 k_10 BOUND_VARIABLE_2235))))) (let ((_let_92 (not _let_90))) (let ((_let_93 (or _let_91 (forall ((BOUND_VARIABLE_2317 $$unsorted) (V $$unsorted)) (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_2317) V)))))) (let ((_let_94 (forall ((BOUND_VARIABLE_1702 $$unsorted)) (or (not (ho_4 (ho_3 k_5 BOUND_VARIABLE_1702) BOUND_VARIABLE_1702)) (ho_4 k_10 BOUND_VARIABLE_1702))))) (let ((_let_95 (forall ((BOUND_VARIABLE_2326 $$unsorted) (V $$unsorted)) (not (ho_4 (ho_3 k_5 BOUND_VARIABLE_2326) V))))) (let ((_let_96 (forall ((BOUND_VARIABLE_2276 $$unsorted)) (or (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_2276) BOUND_VARIABLE_2276)) (ho_4 k_10 BOUND_VARIABLE_2276))))) (let ((_let_97 (or _let_96 _let_95))) (let ((_let_98 (not _let_94))) (let ((_let_99 (and _let_98 (not (forall ((V $$unsorted)) (not (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_19) V))))))) (let ((_let_100 (ho_4 k_10 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_18))) (let ((_let_101 (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_18) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_18))) (let ((_let_102 (not _let_101))) (let ((_let_103 (or _let_102 _let_100))) (let ((_let_104 (ho_4 (ho_3 k_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_19) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_20))) (let ((_let_105 (not _let_104))) (let ((_let_106 (or _let_105 _let_99 _let_102 _let_100))) (let ((_let_107 (not _let_91))) (let ((_let_108 (or))) (let ((_let_109 (not _let_96))) (let ((_let_110 (_let_109))) (let ((_let_111 (not _let_95))) (let ((_let_112 (_let_111))) (let ((_let_113 (forall ((W $$unsorted) (BOUND_VARIABLE_1861 $$unsorted) (BOUND_VARIABLE_2475 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_1855 $$unsorted)) (or (not (ho_4 (ho_3 k_5 W) BOUND_VARIABLE_1855)) (and (not (forall ((BOUND_VARIABLE_1702 $$unsorted)) (or (not (ho_4 (ho_3 k_5 BOUND_VARIABLE_1702) BOUND_VARIABLE_1702)) (ho_4 BOUND_VARIABLE_2475 BOUND_VARIABLE_1702)))) (not (forall ((V $$unsorted)) (not (ho_4 (ho_3 k_2 W) V))))) (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_1861) BOUND_VARIABLE_1861)) (ho_4 BOUND_VARIABLE_2475 BOUND_VARIABLE_1861))))) (let ((_let_114 (EQ_RESOLVE (ASSUME :args (_let_9)) (TRANS (MACRO_SR_EQ_INTRO _let_64 :args (_let_9 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((W $$unsorted) (BOUND_VARIABLE_1861 $$unsorted) (BOUND_VARIABLE_1859 (-> $$unsorted Bool)) (BOUND_VARIABLE_1855 $$unsorted)) (or (not (@ (@ tptp.john W) BOUND_VARIABLE_1855)) (and (not (forall ((BOUND_VARIABLE_1702 $$unsorted)) (or (not (@ (@ tptp.john BOUND_VARIABLE_1702) BOUND_VARIABLE_1702)) (@ BOUND_VARIABLE_1859 BOUND_VARIABLE_1702)))) (not (forall ((V $$unsorted)) (not (@ (@ tptp.peter W) V))))) (not (@ (@ tptp.peter BOUND_VARIABLE_1861) BOUND_VARIABLE_1861)) (@ BOUND_VARIABLE_1859 BOUND_VARIABLE_1861))) _let_113))))))) (let ((_let_115 (_let_107))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_65 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12 QUANTIFIERS_INST_CBQI_CONFLICT)) :args (_let_43))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_47)) :args ((or _let_46 _let_44 _let_66))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_78 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((ho_3 k_2 S)))) :args _let_79)) _let_78 :args (_let_45 false _let_77)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_73)) :args ((or _let_72 _let_70 _let_69 _let_67 (not _let_73)))) _let_89 (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_90 1)) (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_115)) :args _let_115)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_107) _let_91))) (REFL :args (_let_92)) :args _let_108)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_106)) :args ((or _let_102 _let_100 _let_105 _let_99 (not _let_106)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_114 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_19 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_18 k_10 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_20 QUANTIFIERS_INST_E_MATCHING ((not (= (ho_4 (ho_3 k_5 W) BOUND_VARIABLE_1855) false)) (not (= (ho_4 BOUND_VARIABLE_2475 BOUND_VARIABLE_1861) true))))) :args (_let_113))) _let_114 :args (_let_106 false _let_113)) (CNF_OR_NEG :args (_let_103 1)) (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_103 0)) (CONG (REFL :args (_let_103)) (MACRO_SR_PRED_INTRO :args ((= (not _let_102) _let_101))) :args _let_108)) :args ((or _let_101 _let_103))) (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE (ASSUME :args _let_112)) :args _let_112) (REWRITE :args ((=> _let_111 (not _let_105)))))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_111) _let_95))) (REFL :args (_let_104)) :args _let_108)) (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_110)) :args _let_110)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_109) _let_96))) (REFL :args ((not _let_103))) :args _let_108)) (CNF_OR_NEG :args (_let_97 1)) (CNF_OR_NEG :args (_let_97 0)) (REORDERING (CNF_AND_POS :args (_let_99 0)) :args ((or _let_98 (not _let_99)))) (NOT_AND (EQ_RESOLVE (ASSUME :args (_let_3)) (TRANS (MACRO_SR_EQ_INTRO _let_64 :args (_let_3 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (and (or (forall ((BOUND_VARIABLE_2235 $$unsorted)) (or (not (@ (@ tptp.john BOUND_VARIABLE_2235) BOUND_VARIABLE_2235)) (@ tptp.appointment BOUND_VARIABLE_2235))) (forall ((BOUND_VARIABLE_2317 $$unsorted) (V $$unsorted)) (not (@ (@ tptp.peter BOUND_VARIABLE_2317) V)))) (or (forall ((BOUND_VARIABLE_2276 $$unsorted)) (or (not (@ (@ tptp.peter BOUND_VARIABLE_2276) BOUND_VARIABLE_2276)) (@ tptp.appointment BOUND_VARIABLE_2276))) (forall ((BOUND_VARIABLE_2326 $$unsorted) (V $$unsorted)) (not (@ (@ tptp.john BOUND_VARIABLE_2326) V)))))) (not (and _let_93 _let_97)))))))) (EQUIV_ELIM1 (ALPHA_EQUIV :args (_let_91 (= BOUND_VARIABLE_2235 BOUND_VARIABLE_1702)))) (CNF_OR_NEG :args (_let_93 0)) :args (_let_107 false _let_106 true _let_100 false _let_101 false _let_104 true _let_103 true _let_95 true _let_96 true _let_99 true _let_97 false _let_94 false _let_93)) :args (_let_92 true _let_91)) :args ((not _let_70) true _let_90)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_84)) :args ((or _let_72 _let_68 (not _let_84)))) _let_89 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_86) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((ho_3 k_5 BOUND_VARIABLE_2027)))) :args _let_86)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (ASSUME :args (_let_7)) (TRANS (MACRO_SR_EQ_INTRO _let_64 :args (_let_7 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (or (forall ((BOUND_VARIABLE_2027 $$unsorted)) (or (not (@ (@ tptp.john BOUND_VARIABLE_2027) BOUND_VARIABLE_2027)) (@ tptp.place BOUND_VARIABLE_2027))) _let_82) (or _let_85 _let_75)))))) :args ((or _let_75 _let_85))) _let_81 :args (_let_85 true _let_75)) :args (_let_84 false _let_85)) :args (_let_68 false _let_71 false _let_84)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_83) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_12 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((ho_3 k_5 BOUND_VARIABLE_2189)))) :args _let_83)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (ASSUME :args (_let_4)) (TRANS (MACRO_SR_EQ_INTRO _let_64 :args (_let_4 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (or (forall ((BOUND_VARIABLE_2189 $$unsorted)) (or (not (@ (@ tptp.john BOUND_VARIABLE_2189) BOUND_VARIABLE_2189)) (@ tptp.appointment BOUND_VARIABLE_2189) (not (@ tptp.place BOUND_VARIABLE_2189)) (not (@ tptp.time BOUND_VARIABLE_2189)))) _let_82) (or _let_74 _let_75)))))) :args ((or _let_75 _let_74))) _let_81 :args (_let_74 true _let_75)) :args (_let_73 false _let_74)) :args (_let_67 false _let_71 true _let_70 false _let_68 false _let_73)) :args (_let_66 false _let_45 true _let_44)) _let_65 :args (false true _let_47 false _let_43)) :args (_let_42 _let_41 _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31 _let_30 _let_29 _let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21 _let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 _let_12 _let_11 _let_10 (@ tptp.mreflexive _let_6) (@ tptp.mtransitive tptp.peter) (@ tptp.mtransitive tptp.john) (@ tptp.mtransitive _let_6) _let_9 (@ tptp.mvalid (@ tptp.mforall_prop (lambda ((A (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mimplies (@ (@ tptp.mbox (@ tptp.wife tptp.peter)) A)) (@ (@ tptp.mbox tptp.peter) A)) __flatten_var_0)))) _let_8 _let_7 (@ tptp.mvalid (@ (@ tptp.mbox _let_6) (@ (@ tptp.mimplies _let_5) (@ _let_2 tptp.time)))) _let_4 _let_3 true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.20/0.59  )
% 0.20/0.59  % SZS output end Proof for PUZ086^1
% 0.20/0.59  % cvc5---1.0.5 exiting
% 0.20/0.59  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------